You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1384 lines
52 KiB
Python

import logging
import sys
import traceback
import uuid
import warnings
from collections import namedtuple
from datetime import datetime, timedelta, timezone
from functools import total_ordering
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Type, Union
from redis import WatchError
from .timeouts import BaseDeathPenalty, UnixSignalDeathPenalty
if TYPE_CHECKING:
from redis import Redis
from redis.client import Pipeline
from .job import Retry
from .connections import resolve_connection
from .defaults import DEFAULT_RESULT_TTL
from .dependency import Dependency
from .exceptions import DequeueTimeout, NoSuchJobError
from .job import Job, JobStatus
from .logutils import blue, green
from .serializers import resolve_serializer
from .types import FunctionReferenceType, JobDependencyType
from .utils import as_text, backend_class, compact, get_version, import_attribute, parse_timeout, utcnow
logger = logging.getLogger("rq.queue")
class EnqueueData(
namedtuple(
'EnqueueData',
[
"func",
"args",
"kwargs",
"timeout",
"result_ttl",
"ttl",
"failure_ttl",
"description",
"depends_on",
"job_id",
"at_front",
"meta",
"retry",
"on_success",
"on_failure",
],
)
):
"""Helper type to use when calling enqueue_many
NOTE: Does not support `depends_on` yet.
"""
__slots__ = ()
@total_ordering
class Queue:
job_class: Type['Job'] = Job
death_penalty_class: Type[BaseDeathPenalty] = UnixSignalDeathPenalty
DEFAULT_TIMEOUT: int = 180 # Default timeout seconds.
redis_queue_namespace_prefix: str = 'rq:queue:'
redis_queues_keys: str = 'rq:queues'
@classmethod
def all(
cls,
connection: Optional['Redis'] = None,
job_class: Optional[Type['Job']] = None,
serializer=None,
death_penalty_class: Optional[Type[BaseDeathPenalty]] = None,
) -> List['Queue']:
"""Returns an iterable of all Queues.
Args:
connection (Optional[Redis], optional): The Redis Connection. Defaults to None.
job_class (Optional[Job], optional): The Job class to use. Defaults to None.
serializer (optional): The serializer to use. Defaults to None.
death_penalty_class (Optional[Job], optional): The Death Penalty class to use. Defaults to None.
Returns:
queues (List[Queue]): A list of all queues.
"""
connection = connection or resolve_connection()
def to_queue(queue_key: Union[bytes, str]):
return cls.from_queue_key(
as_text(queue_key),
connection=connection,
job_class=job_class,
serializer=serializer,
death_penalty_class=death_penalty_class,
)
all_registerd_queues = connection.smembers(cls.redis_queues_keys)
all_queues = [to_queue(rq_key) for rq_key in all_registerd_queues if rq_key]
return all_queues
@classmethod
def from_queue_key(
cls,
queue_key: str,
connection: Optional['Redis'] = None,
job_class: Optional[Type['Job']] = None,
serializer: Any = None,
death_penalty_class: Optional[Type[BaseDeathPenalty]] = None,
) -> 'Queue':
"""Returns a Queue instance, based on the naming conventions for naming
the internal Redis keys. Can be used to reverse-lookup Queues by their
Redis keys.
Args:
queue_key (str): The queue key
connection (Optional[Redis], optional): Redis connection. Defaults to None.
job_class (Optional[Job], optional): Job class. Defaults to None.
serializer (Any, optional): Serializer. Defaults to None.
death_penalty_class (Optional[BaseDeathPenalty], optional): Death penalty class. Defaults to None.
Raises:
ValueError: If the queue_key doesn't start with the defined prefix
Returns:
queue (Queue): The Queue object
"""
prefix = cls.redis_queue_namespace_prefix
if not queue_key.startswith(prefix):
raise ValueError('Not a valid RQ queue key: {0}'.format(queue_key))
name = queue_key[len(prefix) :]
return cls(
name,
connection=connection,
job_class=job_class,
serializer=serializer,
death_penalty_class=death_penalty_class,
)
@classmethod
def get_intermediate_queue_key(cls, key: str) -> str:
"""Returns the intermediate queue key for a given queue key.
Args:
key (str): The queue key
Returns:
str: The intermediate queue key
"""
return f'{key}:intermediate'
def __init__(
self,
name: str = 'default',
default_timeout: Optional[int] = None,
connection: Optional['Redis'] = None,
is_async: bool = True,
job_class: Optional[Union[str, Type['Job']]] = None,
serializer: Any = None,
death_penalty_class: Type[BaseDeathPenalty] = UnixSignalDeathPenalty,
**kwargs,
):
"""Initializes a Queue object.
Args:
name (str, optional): The queue name. Defaults to 'default'.
default_timeout (Optional[int], optional): Queue's default timeout. Defaults to None.
connection (Optional[Redis], optional): Redis connection. Defaults to None.
is_async (bool, optional): Whether jobs should run "async" (using the worker).
If `is_async` is false, jobs will run on the same process from where it was called. Defaults to True.
job_class (Union[str, 'Job', optional): Job class or a string referencing the Job class path.
Defaults to None.
serializer (Any, optional): Serializer. Defaults to None.
death_penalty_class (Type[BaseDeathPenalty, optional): Job class or a string referencing the Job class path.
Defaults to UnixSignalDeathPenalty.
"""
self.connection = connection or resolve_connection()
prefix = self.redis_queue_namespace_prefix
self.name = name
self._key = '{0}{1}'.format(prefix, name)
self._default_timeout = parse_timeout(default_timeout) or self.DEFAULT_TIMEOUT
self._is_async = is_async
self.log = logger
if 'async' in kwargs:
self._is_async = kwargs['async']
warnings.warn('The `async` keyword is deprecated. Use `is_async` instead', DeprecationWarning)
# override class attribute job_class if one was passed
if job_class is not None:
if isinstance(job_class, str):
job_class = import_attribute(job_class)
self.job_class = job_class
self.death_penalty_class = death_penalty_class
self.serializer = resolve_serializer(serializer)
self.redis_server_version: Optional[Tuple[int, int, int]] = None
def __len__(self):
return self.count
def __bool__(self):
return True
def __iter__(self):
yield self
def get_redis_server_version(self) -> Tuple[int, int, int]:
"""Return Redis server version of connection
Returns:
redis_version (Tuple): A tuple with the parsed Redis version (eg: (5,0,0))
"""
if not self.redis_server_version:
self.redis_server_version = get_version(self.connection)
return self.redis_server_version
@property
def key(self):
"""Returns the Redis key for this Queue."""
return self._key
@property
def intermediate_queue_key(self):
"""Returns the Redis key for intermediate queue."""
return self.get_intermediate_queue_key(self._key)
@property
def registry_cleaning_key(self):
"""Redis key used to indicate this queue has been cleaned."""
return 'rq:clean_registries:%s' % self.name
@property
def scheduler_pid(self) -> int:
from rq.scheduler import RQScheduler
pid = self.connection.get(RQScheduler.get_locking_key(self.name))
return int(pid.decode()) if pid is not None else None
def acquire_maintenance_lock(self) -> bool:
"""Returns a boolean indicating whether a lock to clean this queue
is acquired. A lock expires in 899 seconds (15 minutes - 1 second)
Returns:
lock_acquired (bool)
"""
lock_acquired = self.connection.set(self.registry_cleaning_key, 1, nx=1, ex=899)
if not lock_acquired:
return False
return lock_acquired
def empty(self):
"""Removes all messages on the queue.
This is currently being done using a Lua script,
which iterates all queue messages and deletes the jobs and it's dependents.
It registers the Lua script and calls it.
Even though is currently being returned, this is not strictly necessary.
Returns:
script (...): The Lua Script is called.
"""
script = """
local prefix = "{0}"
local q = KEYS[1]
local count = 0
while true do
local job_id = redis.call("lpop", q)
if job_id == false then
break
end
-- Delete the relevant keys
redis.call("del", prefix..job_id)
redis.call("del", prefix..job_id..":dependents")
count = count + 1
end
return count
""".format(
self.job_class.redis_job_namespace_prefix
).encode(
"utf-8"
)
script = self.connection.register_script(script)
return script(keys=[self.key])
def delete(self, delete_jobs: bool = True):
"""Deletes the queue.
Args:
delete_jobs (bool): If true, removes all the associated messages on the queue first.
"""
if delete_jobs:
self.empty()
with self.connection.pipeline() as pipeline:
pipeline.srem(self.redis_queues_keys, self._key)
pipeline.delete(self._key)
pipeline.execute()
def is_empty(self) -> bool:
"""Returns whether the current queue is empty.
Returns:
is_empty (bool): Whether the queue is empty
"""
return self.count == 0
@property
def is_async(self) -> bool:
"""Returns whether the current queue is async."""
return bool(self._is_async)
def fetch_job(self, job_id: str) -> Optional['Job']:
"""Fetch a single job by Job ID.
If the job key is not found, will run the `remove` method, to exclude the key.
If the job has the same name as as the current job origin, returns the Job
Args:
job_id (str): The Job ID
Returns:
job (Optional[Job]): The job if found
"""
try:
job = self.job_class.fetch(job_id, connection=self.connection, serializer=self.serializer)
except NoSuchJobError:
self.remove(job_id)
else:
if job.origin == self.name:
return job
def get_job_position(self, job_or_id: Union['Job', str]) -> Optional[int]:
"""Returns the position of a job within the queue
Using Redis before 6.0.6 and redis-py before 3.5.4 has a complexity of
worse than O(N) and should not be used for very long job queues. Redis
and redis-py version afterwards should support the LPOS command
handling job positions within Redis c implementation.
Args:
job_or_id (Union[Job, str]): The Job instance or Job ID
Returns:
_type_: _description_
"""
job_id = job_or_id.id if isinstance(job_or_id, self.job_class) else job_or_id
if self.get_redis_server_version() >= (6, 0, 6):
try:
return self.connection.lpos(self.key, job_id)
except AttributeError:
# not yet implemented by redis-py
pass
if job_id in self.job_ids:
return self.job_ids.index(job_id)
return None
def get_job_ids(self, offset: int = 0, length: int = -1) -> List[str]:
"""Returns a slice of job IDs in the queue.
Args:
offset (int, optional): The offset. Defaults to 0.
length (int, optional): The slice length. Defaults to -1 (last element).
Returns:
_type_: _description_
"""
start = offset
if length >= 0:
end = offset + (length - 1)
else:
end = length
job_ids = [as_text(job_id) for job_id in self.connection.lrange(self.key, start, end)]
self.log.debug('Getting jobs for queue %s: %d found.', green(self.name), len(job_ids))
return job_ids
def get_jobs(self, offset: int = 0, length: int = -1) -> List['Job']:
"""Returns a slice of jobs in the queue.
Args:
offset (int, optional): The offset. Defaults to 0.
length (int, optional): The slice length. Defaults to -1.
Returns:
_type_: _description_
"""
job_ids = self.get_job_ids(offset, length)
return compact([self.fetch_job(job_id) for job_id in job_ids])
@property
def job_ids(self) -> List[str]:
"""Returns a list of all job IDS in the queue."""
return self.get_job_ids()
@property
def jobs(self) -> List['Job']:
"""Returns a list of all (valid) jobs in the queue."""
return self.get_jobs()
@property
def count(self) -> int:
"""Returns a count of all messages in the queue."""
return self.connection.llen(self.key)
@property
def failed_job_registry(self):
"""Returns this queue's FailedJobRegistry."""
from rq.registry import FailedJobRegistry
return FailedJobRegistry(queue=self, job_class=self.job_class, serializer=self.serializer)
@property
def started_job_registry(self):
"""Returns this queue's StartedJobRegistry."""
from rq.registry import StartedJobRegistry
return StartedJobRegistry(queue=self, job_class=self.job_class, serializer=self.serializer)
@property
def finished_job_registry(self):
"""Returns this queue's FinishedJobRegistry."""
from rq.registry import FinishedJobRegistry
# TODO: Why was job_class only ommited here before? Was it intentional?
return FinishedJobRegistry(queue=self, job_class=self.job_class, serializer=self.serializer)
@property
def deferred_job_registry(self):
"""Returns this queue's DeferredJobRegistry."""
from rq.registry import DeferredJobRegistry
return DeferredJobRegistry(queue=self, job_class=self.job_class, serializer=self.serializer)
@property
def scheduled_job_registry(self):
"""Returns this queue's ScheduledJobRegistry."""
from rq.registry import ScheduledJobRegistry
return ScheduledJobRegistry(queue=self, job_class=self.job_class, serializer=self.serializer)
@property
def canceled_job_registry(self):
"""Returns this queue's CanceledJobRegistry."""
from rq.registry import CanceledJobRegistry
return CanceledJobRegistry(queue=self, job_class=self.job_class, serializer=self.serializer)
def remove(self, job_or_id: Union['Job', str], pipeline: Optional['Pipeline'] = None):
"""Removes Job from queue, accepts either a Job instance or ID.
Args:
job_or_id (Union[Job, str]): The Job instance or Job ID string.
pipeline (Optional[Pipeline], optional): The Redis Pipeline. Defaults to None.
Returns:
_type_: _description_
"""
job_id: str = job_or_id.id if isinstance(job_or_id, self.job_class) else job_or_id
if pipeline is not None:
return pipeline.lrem(self.key, 1, job_id)
return self.connection.lrem(self.key, 1, job_id)
def compact(self):
"""Removes all "dead" jobs from the queue by cycling through it,
while guaranteeing FIFO semantics.
"""
COMPACT_QUEUE = '{0}_compact:{1}'.format(self.redis_queue_namespace_prefix, uuid.uuid4()) # noqa
self.connection.rename(self.key, COMPACT_QUEUE)
while True:
job_id = self.connection.lpop(COMPACT_QUEUE)
if job_id is None:
break
if self.job_class.exists(as_text(job_id), self.connection):
self.connection.rpush(self.key, job_id)
def push_job_id(self, job_id: str, pipeline: Optional['Pipeline'] = None, at_front: bool = False):
"""Pushes a job ID on the corresponding Redis queue.
'at_front' allows you to push the job onto the front instead of the back of the queue
Args:
job_id (str): The Job ID
pipeline (Optional[Pipeline], optional): The Redis Pipeline to use. Defaults to None.
at_front (bool, optional): Whether to push the job to front of the queue. Defaults to False.
"""
connection = pipeline if pipeline is not None else self.connection
push = connection.lpush if at_front else connection.rpush
result = push(self.key, job_id)
if pipeline is None:
self.log.debug('Pushed job %s into %s, %s job(s) are in queue.', blue(job_id), green(self.name), result)
else:
# Pipelines do not return the number of jobs in the queue.
self.log.debug('Pushed job %s into %s', blue(job_id), green(self.name))
def create_job(
self,
func: 'FunctionReferenceType',
args: Union[Tuple, List, None] = None,
kwargs: Optional[Dict] = None,
timeout: Optional[int] = None,
result_ttl: Optional[int] = None,
ttl: Optional[int] = None,
failure_ttl: Optional[int] = None,
description: Optional[str] = None,
depends_on: Optional['JobDependencyType'] = None,
job_id: Optional[str] = None,
meta: Optional[Dict] = None,
status: JobStatus = JobStatus.QUEUED,
retry: Optional['Retry'] = None,
*,
on_success: Optional[Callable] = None,
on_failure: Optional[Callable] = None,
) -> Job:
"""Creates a job based on parameters given
Args:
func (FunctionReferenceType): The function referce: a callable or the path.
args (Union[Tuple, List, None], optional): The `*args` to pass to the function. Defaults to None.
kwargs (Optional[Dict], optional): The `**kwargs` to pass to the function. Defaults to None.
timeout (Optional[int], optional): Function timeout. Defaults to None.
result_ttl (Optional[int], optional): Result time to live. Defaults to None.
ttl (Optional[int], optional): Time to live. Defaults to None.
failure_ttl (Optional[int], optional): Failure time to live. Defaults to None.
description (Optional[str], optional): The description. Defaults to None.
depends_on (Optional[JobDependencyType], optional): The job dependencies. Defaults to None.
job_id (Optional[str], optional): Job ID. Defaults to None.
meta (Optional[Dict], optional): Job metadata. Defaults to None.
status (JobStatus, optional): Job status. Defaults to JobStatus.QUEUED.
retry (Optional[Retry], optional): The Retry Object. Defaults to None.
on_success (Optional[Callable], optional): On success callable. Defaults to None.
on_failure (Optional[Callable], optional): On failure callable. Defaults to None.
Raises:
ValueError: If the timeout is 0
ValueError: If the job TTL is 0 or negative
Returns:
Job: The created job
"""
timeout = parse_timeout(timeout)
if timeout is None:
timeout = self._default_timeout
elif timeout == 0:
raise ValueError('0 timeout is not allowed. Use -1 for infinite timeout')
result_ttl = parse_timeout(result_ttl)
failure_ttl = parse_timeout(failure_ttl)
ttl = parse_timeout(ttl)
if ttl is not None and ttl <= 0:
raise ValueError('Job ttl must be greater than 0')
job = self.job_class.create(
func,
args=args,
kwargs=kwargs,
connection=self.connection,
result_ttl=result_ttl,
ttl=ttl,
failure_ttl=failure_ttl,
status=status,
description=description,
depends_on=depends_on,
timeout=timeout,
id=job_id,
origin=self.name,
meta=meta,
serializer=self.serializer,
on_success=on_success,
on_failure=on_failure,
)
if retry:
job.retries_left = retry.max
job.retry_intervals = retry.intervals
return job
def setup_dependencies(self, job: 'Job', pipeline: Optional['Pipeline'] = None) -> 'Job':
"""If a _dependent_ job depends on any unfinished job, register all the
_dependent_ job's dependencies instead of enqueueing it.
`Job#fetch_dependencies` sets WATCH on all dependencies. If
WatchError is raised in the when the pipeline is executed, that means
something else has modified either the set of dependencies or the
status of one of them. In this case, we simply retry.
Args:
job (Job): The job
pipeline (Optional[Pipeline], optional): The Redis Pipeline. Defaults to None.
Returns:
job (Job): The Job
"""
if len(job._dependency_ids) > 0:
orig_status = job.get_status(refresh=False)
pipe = pipeline if pipeline is not None else self.connection.pipeline()
while True:
try:
# Also calling watch even if caller
# passed in a pipeline since Queue#create_job
# is called from within this method.
pipe.watch(job.dependencies_key)
dependencies = job.fetch_dependencies(watch=True, pipeline=pipe)
pipe.multi()
for dependency in dependencies:
if dependency.get_status(refresh=False) != JobStatus.FINISHED:
# NOTE: If the following code changes local variables, those values probably have
# to be set back to their original values in the handling of WatchError below!
job.set_status(JobStatus.DEFERRED, pipeline=pipe)
job.register_dependency(pipeline=pipe)
job.save(pipeline=pipe)
job.cleanup(ttl=job.ttl, pipeline=pipe)
if pipeline is None:
pipe.execute()
return job
break
except WatchError:
if pipeline is None:
# The call to job.set_status(JobStatus.DEFERRED, pipeline=pipe) above has changed the
# internal "_status". We have to reset it to its original value (probably QUEUED), so
# if during the next run no unfinished dependencies exist anymore, the job gets
# enqueued correctly by enqueue_call().
job._status = orig_status
continue
else:
# if pipeline comes from caller, re-raise to them
raise
elif pipeline is not None:
pipeline.multi() # Ensure pipeline in multi mode before returning to caller
return job
def enqueue_call(
self,
func: 'FunctionReferenceType',
args: Union[Tuple, List, None] = None,
kwargs: Optional[Dict] = None,
timeout: Optional[int] = None,
result_ttl: Optional[int] = None,
ttl: Optional[int] = None,
failure_ttl: Optional[int] = None,
description: Optional[str] = None,
depends_on: Optional['JobDependencyType'] = None,
job_id: Optional[str] = None,
at_front: bool = False,
meta: Optional[Dict] = None,
retry: Optional['Retry'] = None,
on_success: Optional[Callable[..., Any]] = None,
on_failure: Optional[Callable[..., Any]] = None,
pipeline: Optional['Pipeline'] = None,
) -> Job:
"""Creates a job to represent the delayed function call and enqueues it.
It is much like `.enqueue()`, except that it takes the function's args
and kwargs as explicit arguments. Any kwargs passed to this function
contain options for RQ itself.
Args:
func (FunctionReferenceType): The reference to the function
args (Union[Tuple, List, None], optional): THe `*args` to pass to the function. Defaults to None.
kwargs (Optional[Dict], optional): THe `**kwargs` to pass to the function. Defaults to None.
timeout (Optional[int], optional): Function timeout. Defaults to None.
result_ttl (Optional[int], optional): Result time to live. Defaults to None.
ttl (Optional[int], optional): Time to live. Defaults to None.
failure_ttl (Optional[int], optional): Failure time to live. Defaults to None.
description (Optional[str], optional): The job description. Defaults to None.
depends_on (Optional[JobDependencyType], optional): The job dependencies. Defaults to None.
job_id (Optional[str], optional): The job ID. Defaults to None.
at_front (bool, optional): Whether to enqueue the job at the front. Defaults to False.
meta (Optional[Dict], optional): Metadata to attach to the job. Defaults to None.
retry (Optional[Retry], optional): Retry object. Defaults to None.
on_success (Optional[Callable[..., Any]], optional): Callable for on success. Defaults to None.
on_failure (Optional[Callable[..., Any]], optional): Callable for on failure. Defaults to None.
pipeline (Optional[Pipeline], optional): The Redis Pipeline. Defaults to None.
Returns:
Job: The enqueued Job
"""
job = self.create_job(
func,
args=args,
kwargs=kwargs,
result_ttl=result_ttl,
ttl=ttl,
failure_ttl=failure_ttl,
description=description,
depends_on=depends_on,
job_id=job_id,
meta=meta,
status=JobStatus.QUEUED,
timeout=timeout,
retry=retry,
on_success=on_success,
on_failure=on_failure,
)
return self.enqueue_job(job, pipeline=pipeline, at_front=at_front)
@staticmethod
def prepare_data(
func: 'FunctionReferenceType',
args: Union[Tuple, List, None] = None,
kwargs: Optional[Dict] = None,
timeout: Optional[int] = None,
result_ttl: Optional[int] = None,
ttl: Optional[int] = None,
failure_ttl: Optional[int] = None,
description: Optional[str] = None,
depends_on: Optional[List] = None,
job_id: Optional[str] = None,
at_front: bool = False,
meta: Optional[Dict] = None,
retry: Optional['Retry'] = None,
on_success: Optional[Callable] = None,
on_failure: Optional[Callable] = None,
) -> EnqueueData:
"""Need this till support dropped for python_version < 3.7, where defaults can be specified for named tuples
And can keep this logic within EnqueueData
Args:
func (FunctionReferenceType): The reference to the function
args (Union[Tuple, List, None], optional): THe `*args` to pass to the function. Defaults to None.
kwargs (Optional[Dict], optional): THe `**kwargs` to pass to the function. Defaults to None.
timeout (Optional[int], optional): Function timeout. Defaults to None.
result_ttl (Optional[int], optional): Result time to live. Defaults to None.
ttl (Optional[int], optional): Time to live. Defaults to None.
failure_ttl (Optional[int], optional): Failure time to live. Defaults to None.
description (Optional[str], optional): The job description. Defaults to None.
depends_on (Optional[JobDependencyType], optional): The job dependencies. Defaults to None.
job_id (Optional[str], optional): The job ID. Defaults to None.
at_front (bool, optional): Whether to enqueue the job at the front. Defaults to False.
meta (Optional[Dict], optional): Metadata to attach to the job. Defaults to None.
retry (Optional[Retry], optional): Retry object. Defaults to None.
on_success (Optional[Callable[..., Any]], optional): Callable for on success. Defaults to None.
on_failure (Optional[Callable[..., Any]], optional): Callable for on failure. Defaults to None.
Returns:
EnqueueData: The EnqueueData
"""
return EnqueueData(
func,
args,
kwargs,
timeout,
result_ttl,
ttl,
failure_ttl,
description,
depends_on,
job_id,
at_front,
meta,
retry,
on_success,
on_failure,
)
def enqueue_many(self, job_datas: List['EnqueueData'], pipeline: Optional['Pipeline'] = None) -> List[Job]:
"""Creates multiple jobs (created via `Queue.prepare_data` calls)
to represent the delayed function calls and enqueues them.
Args:
job_datas (List['EnqueueData']): A List of job data
pipeline (Optional[Pipeline], optional): The Redis Pipeline. Defaults to None.
Returns:
List[Job]: A list of enqueued jobs
"""
pipe = pipeline if pipeline is not None else self.connection.pipeline()
jobs_without_dependencies = []
jobs_with_unmet_dependencies = []
jobs_with_met_dependencies = []
def get_job_kwargs(job_data, initial_status):
return {
"func": job_data.func,
"args": job_data.args,
"kwargs": job_data.kwargs,
"result_ttl": job_data.result_ttl,
"ttl": job_data.ttl,
"failure_ttl": job_data.failure_ttl,
"description": job_data.description,
"depends_on": job_data.depends_on,
"job_id": job_data.job_id,
"meta": job_data.meta,
"status": initial_status,
"timeout": job_data.timeout,
"retry": job_data.retry,
"on_success": job_data.on_success,
"on_failure": job_data.on_failure,
}
# Enqueue jobs without dependencies
job_datas_without_dependencies = [job_data for job_data in job_datas if not job_data.depends_on]
if job_datas_without_dependencies:
jobs_without_dependencies = [
self._enqueue_job(
self.create_job(**get_job_kwargs(job_data, JobStatus.QUEUED)),
pipeline=pipe,
at_front=job_data.at_front,
)
for job_data in job_datas_without_dependencies
]
if pipeline is None:
pipe.execute()
job_datas_with_dependencies = [job_data for job_data in job_datas if job_data.depends_on]
if job_datas_with_dependencies:
# Save all jobs with dependencies as deferred
jobs_with_dependencies = [
self.create_job(**get_job_kwargs(job_data, JobStatus.DEFERRED))
for job_data in job_datas_with_dependencies
]
for job in jobs_with_dependencies:
job.save(pipeline=pipe)
if pipeline is None:
pipe.execute()
# Enqueue the jobs whose dependencies have been met
jobs_with_met_dependencies, jobs_with_unmet_dependencies = Dependency.get_jobs_with_met_dependencies(
jobs_with_dependencies, pipeline=pipe
)
jobs_with_met_dependencies = [
self._enqueue_job(job, pipeline=pipe, at_front=job.enqueue_at_front)
for job in jobs_with_met_dependencies
]
if pipeline is None:
pipe.execute()
return jobs_without_dependencies + jobs_with_unmet_dependencies + jobs_with_met_dependencies
def run_job(self, job: 'Job') -> Job:
"""Run the job
Args:
job (Job): The job to run
Returns:
Job: _description_
"""
job.perform()
result_ttl = job.get_result_ttl(default_ttl=DEFAULT_RESULT_TTL)
with self.connection.pipeline() as pipeline:
job._handle_success(result_ttl=result_ttl, pipeline=pipeline)
job.cleanup(result_ttl, pipeline=pipeline)
pipeline.execute()
return job
@classmethod
def parse_args(cls, f: 'FunctionReferenceType', *args, **kwargs):
"""
Parses arguments passed to `queue.enqueue()` and `queue.enqueue_at()`
The function argument `f` may be any of the following:
* A reference to a function
* A reference to an object's instance method
* A string, representing the location of a function (must be
meaningful to the import context of the workers)
Args:
f (FunctionReferenceType): The function reference
args (*args): function args
kwargs (*kwargs): function kargs
"""
if not isinstance(f, str) and f.__module__ == '__main__':
raise ValueError('Functions from the __main__ module cannot be processed ' 'by workers')
# Detect explicit invocations, i.e. of the form:
# q.enqueue(foo, args=(1, 2), kwargs={'a': 1}, job_timeout=30)
timeout = kwargs.pop('job_timeout', None)
description = kwargs.pop('description', None)
result_ttl = kwargs.pop('result_ttl', None)
ttl = kwargs.pop('ttl', None)
failure_ttl = kwargs.pop('failure_ttl', None)
depends_on = kwargs.pop('depends_on', None)
job_id = kwargs.pop('job_id', None)
at_front = kwargs.pop('at_front', False)
meta = kwargs.pop('meta', None)
retry = kwargs.pop('retry', None)
on_success = kwargs.pop('on_success', None)
on_failure = kwargs.pop('on_failure', None)
pipeline = kwargs.pop('pipeline', None)
if 'args' in kwargs or 'kwargs' in kwargs:
assert args == (), 'Extra positional arguments cannot be used when using explicit args and kwargs' # noqa
args = kwargs.pop('args', None)
kwargs = kwargs.pop('kwargs', None)
return (
f,
timeout,
description,
result_ttl,
ttl,
failure_ttl,
depends_on,
job_id,
at_front,
meta,
retry,
on_success,
on_failure,
pipeline,
args,
kwargs,
)
def enqueue(self, f: 'FunctionReferenceType', *args, **kwargs) -> 'Job':
"""Creates a job to represent the delayed function call and enqueues it.
Receives the same parameters accepted by the `enqueue_call` method.
Args:
f (FunctionReferenceType): The function reference
args (*args): function args
kwargs (*kwargs): function kargs
Returns:
job (Job): The created Job
"""
(
f,
timeout,
description,
result_ttl,
ttl,
failure_ttl,
depends_on,
job_id,
at_front,
meta,
retry,
on_success,
on_failure,
pipeline,
args,
kwargs,
) = Queue.parse_args(f, *args, **kwargs)
return self.enqueue_call(
func=f,
args=args,
kwargs=kwargs,
timeout=timeout,
result_ttl=result_ttl,
ttl=ttl,
failure_ttl=failure_ttl,
description=description,
depends_on=depends_on,
job_id=job_id,
at_front=at_front,
meta=meta,
retry=retry,
on_success=on_success,
on_failure=on_failure,
pipeline=pipeline,
)
def enqueue_at(self, datetime: datetime, f, *args, **kwargs):
"""Schedules a job to be enqueued at specified time
Args:
datetime (datetime): _description_
f (_type_): _description_
Returns:
_type_: _description_
"""
(
f,
timeout,
description,
result_ttl,
ttl,
failure_ttl,
depends_on,
job_id,
at_front,
meta,
retry,
on_success,
on_failure,
pipeline,
args,
kwargs,
) = Queue.parse_args(f, *args, **kwargs)
job = self.create_job(
f,
status=JobStatus.SCHEDULED,
args=args,
kwargs=kwargs,
timeout=timeout,
result_ttl=result_ttl,
ttl=ttl,
failure_ttl=failure_ttl,
description=description,
depends_on=depends_on,
job_id=job_id,
meta=meta,
retry=retry,
on_success=on_success,
on_failure=on_failure,
)
if at_front:
job.enqueue_at_front = True
return self.schedule_job(job, datetime, pipeline=pipeline)
def schedule_job(self, job: 'Job', datetime: datetime, pipeline: Optional['Pipeline'] = None):
"""Puts job on ScheduledJobRegistry
Args:
job (Job): _description_
datetime (datetime): _description_
pipeline (Optional[Pipeline], optional): _description_. Defaults to None.
Returns:
_type_: _description_
"""
from .registry import ScheduledJobRegistry
registry = ScheduledJobRegistry(queue=self)
pipe = pipeline if pipeline is not None else self.connection.pipeline()
# Add Queue key set
pipe.sadd(self.redis_queues_keys, self.key)
job.save(pipeline=pipe)
registry.schedule(job, datetime, pipeline=pipe)
if pipeline is None:
pipe.execute()
return job
def enqueue_in(self, time_delta: timedelta, func: 'FunctionReferenceType', *args, **kwargs) -> 'Job':
"""Schedules a job to be executed in a given `timedelta` object
Args:
time_delta (timedelta): The timedelta object
func (FunctionReferenceType): The function reference
Returns:
job (Job): The enqueued Job
"""
return self.enqueue_at(datetime.now(timezone.utc) + time_delta, func, *args, **kwargs)
def enqueue_job(self, job: 'Job', pipeline: Optional['Pipeline'] = None, at_front: bool = False) -> Job:
"""Enqueues a job for delayed execution checking dependencies.
Args:
job (Job): The job to enqueue
pipeline (Optional[Pipeline], optional): The Redis pipeline to use. Defaults to None.
at_front (bool, optional): Whether should enqueue at the front of the queue. Defaults to False.
Returns:
Job: The enqued job
"""
job.origin = self.name
job = self.setup_dependencies(job, pipeline=pipeline)
# If we do not depend on an unfinished job, enqueue the job.
if job.get_status(refresh=False) != JobStatus.DEFERRED:
return self._enqueue_job(job, pipeline=pipeline, at_front=at_front)
return job
def _enqueue_job(self, job: 'Job', pipeline: Optional['Pipeline'] = None, at_front: bool = False) -> Job:
"""Enqueues a job for delayed execution without checking dependencies.
If Queue is instantiated with is_async=False, job is executed immediately.
Args:
job (Job): The job to enqueue
pipeline (Optional[Pipeline], optional): The Redis pipeline to use. Defaults to None.
at_front (bool, optional): Whether should enqueue at the front of the queue. Defaults to False.
Returns:
Job: The enqued job
"""
pipe = pipeline if pipeline is not None else self.connection.pipeline()
# Add Queue key set
pipe.sadd(self.redis_queues_keys, self.key)
job.redis_server_version = self.get_redis_server_version()
job.set_status(JobStatus.QUEUED, pipeline=pipe)
job.origin = self.name
job.enqueued_at = utcnow()
if job.timeout is None:
job.timeout = self._default_timeout
job.save(pipeline=pipe)
job.cleanup(ttl=job.ttl, pipeline=pipe)
if self._is_async:
self.push_job_id(job.id, pipeline=pipe, at_front=at_front)
if pipeline is None:
pipe.execute()
if not self._is_async:
job = self.run_sync(job)
return job
def run_sync(self, job: 'Job') -> 'Job':
"""Run a job synchronously, meaning on the same process the method was called.
Args:
job (Job): The job to run
Returns:
Job: The job instance
"""
with self.connection.pipeline() as pipeline:
job.prepare_for_execution('sync', pipeline)
try:
job = self.run_job(job)
except: # noqa
with self.connection.pipeline() as pipeline:
job.set_status(JobStatus.FAILED, pipeline=pipeline)
exc_string = ''.join(traceback.format_exception(*sys.exc_info()))
job._handle_failure(exc_string, pipeline)
pipeline.execute()
if job.failure_callback:
job.failure_callback(job, self.connection, *sys.exc_info()) # type: ignore
else:
if job.success_callback:
job.success_callback(job, self.connection, job.return_value()) # type: ignore
return job
def enqueue_dependents(
self, job: 'Job', pipeline: Optional['Pipeline'] = None, exclude_job_id: Optional[str] = None
):
"""Enqueues all jobs in the given job's dependents set and clears it.
When called without a pipeline, this method uses WATCH/MULTI/EXEC.
If you pass a pipeline, only MULTI is called. The rest is up to the
caller.
Args:
job (Job): The Job to enqueue the dependents
pipeline (Optional[Pipeline], optional): The Redis Pipeline. Defaults to None.
exclude_job_id (Optional[str], optional): Whether to exclude the job id. Defaults to None.
"""
from .registry import DeferredJobRegistry
pipe = pipeline if pipeline is not None else self.connection.pipeline()
dependents_key = job.dependents_key
while True:
try:
# if a pipeline is passed, the caller is responsible for calling WATCH
# to ensure all jobs are enqueued
if pipeline is None:
pipe.watch(dependents_key)
dependent_job_ids = {as_text(_id) for _id in pipe.smembers(dependents_key)}
# There's no dependents
if not dependent_job_ids:
break
jobs_to_enqueue = [
dependent_job
for dependent_job in self.job_class.fetch_many(
dependent_job_ids, connection=self.connection, serializer=self.serializer
)
if dependent_job
and dependent_job.dependencies_are_met(
parent_job=job,
pipeline=pipe,
exclude_job_id=exclude_job_id,
)
]
pipe.multi()
if not jobs_to_enqueue:
break
for dependent in jobs_to_enqueue:
enqueue_at_front = dependent.enqueue_at_front or False
registry = DeferredJobRegistry(
dependent.origin, self.connection, job_class=self.job_class, serializer=self.serializer
)
registry.remove(dependent, pipeline=pipe)
if dependent.origin == self.name:
self._enqueue_job(dependent, pipeline=pipe, at_front=enqueue_at_front)
else:
queue = self.__class__(name=dependent.origin, connection=self.connection)
queue._enqueue_job(dependent, pipeline=pipe, at_front=enqueue_at_front)
# Only delete dependents_key if all dependents have been enqueued
if len(jobs_to_enqueue) == len(dependent_job_ids):
pipe.delete(dependents_key)
else:
enqueued_job_ids = [job.id for job in jobs_to_enqueue]
pipe.srem(dependents_key, *enqueued_job_ids)
if pipeline is None:
pipe.execute()
break
except WatchError:
if pipeline is None:
continue
else:
# if the pipeline comes from the caller, we re-raise the
# exception as it it the responsibility of the caller to
# handle it
raise
def pop_job_id(self) -> Optional[str]:
"""Pops a given job ID from this Redis queue.
Returns:
job_id (str): The job id
"""
return as_text(self.connection.lpop(self.key))
@classmethod
def lpop(cls, queue_keys: List[str], timeout: Optional[int], connection: Optional['Redis'] = None):
"""Helper method to abstract away from some Redis API details
where LPOP accepts only a single key, whereas BLPOP
accepts multiple. So if we want the non-blocking LPOP, we need to
iterate over all queues, do individual LPOPs, and return the result.
Until Redis receives a specific method for this, we'll have to wrap it
this way.
The timeout parameter is interpreted as follows:
None - non-blocking (return immediately)
> 0 - maximum number of seconds to block
Args:
queue_keys (_type_): _description_
timeout (Optional[int]): _description_
connection (Optional[Redis], optional): _description_. Defaults to None.
Raises:
ValueError: If timeout of 0 was passed
DequeueTimeout: BLPOP Timeout
Returns:
_type_: _description_
"""
connection = connection or resolve_connection()
if timeout is not None: # blocking variant
if timeout == 0:
raise ValueError('RQ does not support indefinite timeouts. Please pick a timeout value > 0')
colored_queues = ''.join(map(str, [green(str(queue)) for queue in queue_keys]))
logger.debug(f"Starting BLPOP operation for queues {colored_queues} with timeout of {timeout}")
result = connection.blpop(queue_keys, timeout)
if result is None:
logger.debug(f"BLPOP timeout, no jobs found on queues {colored_queues}")
raise DequeueTimeout(timeout, queue_keys)
queue_key, job_id = result
return queue_key, job_id
else: # non-blocking variant
for queue_key in queue_keys:
blob = connection.lpop(queue_key)
if blob is not None:
return queue_key, blob
return None
@classmethod
def lmove(cls, connection: 'Redis', queue_key: str, timeout: Optional[int]):
"""Similar to lpop, but accepts only a single queue key and immediately pushes
the result to an intermediate queue.
"""
if timeout is not None: # blocking variant
if timeout == 0:
raise ValueError('RQ does not support indefinite timeouts. Please pick a timeout value > 0')
colored_queue = green(queue_key)
logger.debug(f"Starting BLMOVE operation for {colored_queue} with timeout of {timeout}")
result = connection.blmove(queue_key, cls.get_intermediate_queue_key(queue_key), timeout)
if result is None:
logger.debug(f"BLMOVE timeout, no jobs found on {colored_queue}")
raise DequeueTimeout(timeout, queue_key)
return queue_key, result
else: # non-blocking variant
result = connection.lmove(queue_key, cls.get_intermediate_queue_key(queue_key))
if result is not None:
return queue_key, result
return None
@classmethod
def dequeue_any(
cls,
queues: List['Queue'],
timeout: Optional[int],
connection: Optional['Redis'] = None,
job_class: Optional['Job'] = None,
serializer: Any = None,
death_penalty_class: Optional[Type[BaseDeathPenalty]] = None,
) -> Tuple['Job', 'Queue']:
"""Class method returning the job_class instance at the front of the given
set of Queues, where the order of the queues is important.
When all of the Queues are empty, depending on the `timeout` argument,
either blocks execution of this function for the duration of the
timeout or until new messages arrive on any of the queues, or returns
None.
See the documentation of cls.lpop for the interpretation of timeout.
Args:
queues (List[Queue]): List of queue objects
timeout (Optional[int]): Timeout for the LPOP
connection (Optional[Redis], optional): Redis Connection. Defaults to None.
job_class (Optional[Type[Job]], optional): The job class. Defaults to None.
serializer (Any, optional): Serializer to use. Defaults to None.
death_penalty_class (Optional[Type[BaseDeathPenalty]], optional): The death penalty class. Defaults to None.
Raises:
e: Any exception
Returns:
job, queue (Tuple[Job, Queue]): A tuple of Job, Queue
"""
job_class: Job = backend_class(cls, 'job_class', override=job_class)
while True:
queue_keys = [q.key for q in queues]
if len(queue_keys) == 1 and get_version(connection) >= (6, 2, 0):
result = cls.lmove(connection, queue_keys[0], timeout)
else:
result = cls.lpop(queue_keys, timeout, connection=connection)
if result is None:
return None
queue_key, job_id = map(as_text, result)
queue = cls.from_queue_key(
queue_key,
connection=connection,
job_class=job_class,
serializer=serializer,
death_penalty_class=death_penalty_class,
)
try:
job = job_class.fetch(job_id, connection=connection, serializer=serializer)
except NoSuchJobError:
# Silently pass on jobs that don't exist (anymore),
# and continue in the look
continue
except Exception as e:
# Attach queue information on the exception for improved error
# reporting
e.job_id = job_id
e.queue = queue
raise e
return job, queue
return None, None
# Total ordering definition (the rest of the required Python methods are
# auto-generated by the @total_ordering decorator)
def __eq__(self, other): # noqa
if not isinstance(other, Queue):
raise TypeError('Cannot compare queues to other objects')
return self.name == other.name
def __lt__(self, other):
if not isinstance(other, Queue):
raise TypeError('Cannot compare queues to other objects')
return self.name < other.name
def __hash__(self): # pragma: no cover
return hash(self.name)
def __repr__(self): # noqa # pragma: no cover
return '{0}({1!r})'.format(self.__class__.__name__, self.name)
def __str__(self):
return '<{0} {1}>'.format(self.__class__.__name__, self.name)